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The performance of catalyst particles where parallel reactions take place can be significantly 
improved through the use of nonuniform activity distributions. The effectiveness factor and the 
global selectivity are the usual parameters used to judge on the particle performance. However, 
depending on the characteristics of the process considered, other integral parameters (combination 
of the previous two) can be more conveniently used to this purpose. With reference to the synthesis 
reaction of ethylene oxide, the most suitable objective function has been proposed and a very easy 
optimization technique, which identify a close approximation of the optimal radial activity distribu- 
tion, has been developed. This leads to a Dirac delta function, in practice approximated by a step 
distribution whose width is about 4% of the particle radius, centered at a particular radial location 
within the particle, which depends on the operating conditions. Such activity distribution, which 
can be realized in practice with known impregnation techniques, leads to particle performances 
superior to the uniform one and to any nonuniform distribution previously proposed in the litera- 
ture. Finally, the developed procedure can be successfully applied to other cases where two 
parallel reactions, with any kinetic expression, take place under nonisothermal conditions. 

INTRODUCTION 

It is well known that intraparticle mass 
and heat diffusion resistances largely affect 
the performance of a catalyst particle. This 
allows, in the case of supported catalyst 
particles, to identify suitable nonuniform 
distributions of the active catalyst within 
the inert support which significantly im- 
prove the particle performance. This can be 
realized in terms of the particle efficiency, 
selectivity (when competitive reactions are 
present), or, in the case of deactivating 
systems, in terms of the particle durability. 
Various analyses appeared in the literature 
devoted either to the theoretical definition 
of suitable activity distributions for some 
specific reacting systems, or to the experi- 
mental achievement of activity distribu- 
tions of various shapes (( 1, 2) and refer- 
ences therein). 

In the following, the industrially relevant 
case of the ethylene oxide synthesis will be 
examined in detail. 

Recently, Johnson and Verykios (I) have 
shown that the performance of this process 
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can be significantly improved using activity 
distributions of the power law form. 

The aim of this work is to define the opti- 
mal activity distribution which, for a given 
set of operating conditions, optimizes the 
particle performance. Such a distribution 
will be defined using the same optimization 
technique which has been successfully ap- 
plied for the optimization of the catalyst 
particle effectiveness factor in the case of 
an isothermal Langmuir-Hinshelwood ki- 
netics (2, 3). 

According to (I), the following kinetic 
scheme proposed by Klugherz and Harriot 
(4) has been adopted 

C2H4 + to, -t, CzH40 (1) 

C2H4 + 302 5 2C02 + 2H20 (2) 

where the combustion reaction of ethylene 
oxide is neglected, due to its limited impor- 
tance with respect to direct combustion of 
ethylene. The reaction rate expressions 
are, according to (4): 

rl = kJ1C221F12 (3) 
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where 

r2 = k2C,C221F22 (4) 

F, = (0.0106 + 2144 C, + 805 C,) 
(1 + 1271 X@) (5) 

F2 = (0.008 + 4166 C1 + 1578 C,) 
(1 + 718 e) (6) 

k, = k,’ exp[y,(8 - 1)&l (7) 

k2 = kz exp[yz(O - 1>/0] (8) 

The reaction rate constants, k,O and k20, are 
evaluated at the temperature value of the 
catalyst particle surface, To. This has been 
assumed as To = 22O”C, which is represen- 
tative of industrial process temperatures, 
and corresponds to the value adopted by 
Klugherz and Harriot (4) in their experi- 
mental work. The dimensionless activation 
energies yi and y2 have been estimated ac- 
cording to the values reported by Verykios 
et al. (5). 

All the used kinetic data have been sum- 
marized in Table 1. 

It is worthwhile to point out that the op- 
timization technique which will be devel- 
oped later, with reference to the case of 
ethylene oxide synthesis, can be easily ex- 
tended to most parallel kinetic schemes op- 
erating under nonisothermal conditions. 

THE OPTIMIZATION PROBLEM 

The dimensionless mass and heat bal- 
ances in a nonuniform catalyst particle, 
with negligible external resistances to mass 
and heat transfer, can be written as 

u41 = (4,‘h + 4J22f2)4J4 (9) 

Uu21 = <Sh% + t2422fMd (10) 

~301 = -(Pd& + P242WW (11) 

with boundary conditions (BCs) 

u, = u2 = e = 1 at x = 1 (12a) 

du, du2 do dx=dx=&~o at x = 0 (12b) 

where the following dimensionless quantities have been used 

8 = TIT0 u, = C,IC,O u2 = C2Icy x = r,JRp 

5‘1 = it 52 = 35 

PI = 
(-A~J,)DIC,~ 

AT0 
p 

2 
= (-AfMhC,” 0-l 

ATO PC@ = -jj- 

f,+ w42*F1~ ewhd@) f+= w422F202 exp(w(W) 

F12 F22 

(13) 

and the operator L[ ] is defined as modulus, are evaluated at the particle sur- 

L[ ] = $2 (Y $J) 
face conditions, i.e., r,’ = k,°C,oC202/F,02; 

(14) k10 is the volume average reaction rate con- 
stant defined as 

where the integer n = 0, 1, 2 indicates the 
infinite slab, infinite cylinder and sphere, k,“(r,)dVp (15) 
respectively. 

k,’ = $1” 
P 

The reaction rate expressions r,O and r2O, where k,O(r,) is the local value, which de- 
which appear in the definition of the Thiele pends on the local concentration of active 
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TABLE 1 

Parameter Values Used in the Reported Calculations 

Cl0 = 1.24 1O-6 mole/cm3 
Czo = 3.72 10e6 mole/cm’ 
To = 493 K 
n=2 
klo = 8.63 lo6 mole/s cm3 
kz” = 6.57 lo6 mole/s cm3 
yl = 21.9 
y2 = 29.7 

AH, = -28670 Cal/mole 
AH2 = -316300 Cal/mole 
$22 = 1.16 +,2 
P2 = 1lPl 
5, = 0.1315 
52 = 0.789 
t$ = 0.263 
c‘ = 10 

catalyst. The activity distribution is usually 
defined as a(r,) = klO(r,)lk10 (or a(r,) = kt(r,)l 

ho, which is obviously identical), 
and thus it must satisfy the integral condi- 
tion derived from Eq. (IS), which, in di- 
mensionless variables, can be written as 

(n + 1) 1; a(x)x”dx = 1 (16) 

Note that the total amount of active cata- 
lyst appears only in the expression of the 
volume average reaction rate constant, 
which will be then kept constant while com- 
paring various expressions of a(x) in order 
to guarantee equal total amount of active 
catalyst. 

The solution of the system of differential 
Equations (9)-(12) can be facilitated 
through the introduction of the following in- 
variant 

w3251 - M-2)4 

+ CBI - P2b2 - (52 - 51)el = 0 (17) 

which integrated with the boundary condi- 
tions (12) leads to 

MlP2 - 52Plh 

+ (PI - P2b2 - (52 - 5,)e + (52 - ‘5 - PI 

f P2 - 432 + &m = 0 (18) 

This constitutes a linear relationship be- 
tween the three unknowns, which can obvi- 
ously replace one of the differential Equa- 
tions (9)-(11). It is worthwhile to point out 
that this is the only invariant present in the 
problem and then at least two differential 
equations must be integrated simulta- 
neously . 

It is now necessary to introduce a signifi- 
cant objective function for the optimization 
problem under examination. Three quanti- 
ties can be considered, each indicative of 
one particular aspect of the particle perfor- 
mance. The effectiveness factor 

a(x)x”dx (19) 

which indicates the ratio between the actual 
total ethylene consumption rate and the 
same quantity evaluated at the particle ex- 
ternal surface conditions. The global nor- 
malized selectivity, S, defined as the ratio 
between the actual global selectivity, S, 
given by 

and the global selectivity evaluated at the 
surface conditions, so: 

which represents the amount of ethylene 
oxide produced per unit of ethylene con- 
sumed. Finally, the overall normalized rate 
of ethylene oxide production, R, can be de- 
fined as 

R = I$ (22) 

which obviously indicates the absolute 
amount of ethylene oxide produced. 

Each of these parameters considers one 
important aspect of the process efficiency, 
but cannot be used as the global objective 
function. In fact, in industrial reactors the 
outlet per pass conversion is held to about 
30% in order to maintain high selectivity 
values, and the exit stream, after removal 
of ethylene oxide and carbon dioxide, is re- 
cycled back to the reactor (6). Therefore, 
the economy of the process requires high 
selectivity, in order to reduce the ethylene 
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amount wasted by the complete combus- 
tion reaction, and large per pass conversion 
in order to reduce the recycle cost. An ac- 
curate optimization of the process would 
obviously require the modeling of the entire 
reactor, including the combustion reaction 
of ethylene oxide which can be significant 
at large ethylene conversion. This is clearly 
beyond the scope of this work, but it shows 
that in the optimization of the particle per- 
formance both selectivity and effectiveness 
factor must be taken into account. In par- 
ticular, for a given ethylene feed flow rate, 
the profit of the process is proportional to 
the sum of two contributions: one due to 
the value of ethylene oxide produced and 
the other one to ethylene conversion, 
which allows saving of the recycle cost: 

P = q(1 + Es)l( 1 + EsO) (23) 

where E indicates the ratio between the cost 
of 1 mole of ethylene oxide and the recycle 
cost per mole of recycled ethylene, and the 
denominator has been added in order to 
normalize the variable P with respect to its 
value at the particle external surface condi- 
tions . 

The optimization problem is now fully 
defined: we want to determine the activity 
distribution function a(x), which maximizes 
the objective function P under the con- 
straint given by Eq. (16): 

yi: P(a(x),ul(x),u2(x),e(X)) (24) 

where ui, u2, and 8 are given by the system 
of differential Eqs. (9)-(12). It is worth- 
while to point out that the same problem 
can be applied to the other integral parame- 
ters characteristic of the particle perfor- 
mance: effectiveness factor, selectivity, 
and overall production rate. The optimiza- 
tion technique will be described in detail 
only for the case of the profit objective 
function, P, since its extension to the 
others is straightforward. 

OPTIMAL ACTIVITY DISTRIBUTION 

The optimization problem can be solved 

using the same technique developed by 
Morbidelli et al. (2) in the case of an iso- 
thermal Langmuir-Hinshelwood kinetics. 
To this aim it is convenient to rewrite the 
objective function (23) in the form 

p=/;h’c u1,4,8)a(x)x”dx (25) 

where 

&4,~28) = (n + lN1 + WTfl + ~22.h1/ 
Kl + G#Q~ + 4~2~1 (26) 

Introducing the local selectivity 

h’fl 
s1 = Mf1 + 42% 

(27) 

and combining Eqs. (9) and (lo), it can be 
obtained 

~3~21 = [52 + 45 - 52)1U41 (28) 

which can be integrated using the BCs (12b) 
and assuming that 

[52 + d5 - 5211 = const 

leading to 

(29) 

dU2 = it2 + d51 - 52ch (30) 

This approximate relationship has been 
used by Johnson and Verykios (1) in their 
numerical procedure for the solution of the 
particle mass balances. Its accuracy is obvi- 
ously dependent on the accuracy of as- 
sumption (29), which should be reasonable 
in the range of parameter values of practical 
interest (see in particular 5, and c2 in Table 
1). Moreover, from Eq. (27) it appears that 
the local selectivity depends solely on the 
ratio cf2/fi) = (F,IF2)2(F201FIo)Zexp[(Y2 - 
r&(0)], which is a weak function of tem- 
perature and composition. Substituting the 
expression for 8 given by Eq. (18), and inte- 
grating Eq. (30), with the initial condition u2 
= 1 at u1 = 1, an explicit expression of u2 as 
a function of uI can be derived. Such rela- 
tionship, together with Eq. (18) for 8, al- 
lows to represent the function defined by 
Eq. (26) in terms of the only variable uI, 
i.e., g(uI,u2,0) = h(u,). Note that for our 
pm-poses it is sufficient to prove the exis- 
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tence of the function h(ui), even though it 
can not be derived analytically. 

Let us define ai, the value of u1 which 
maximizes the function h(u,): 

max @J = st4,u2ta,),e(u,)) = H (31) Ml 

using Eq. (16), it follows that 

P s H/(n + 1) (32) 

So that, if there exists a distribution u(x) 
such that P = H/(n + l), this would obvi- 
ously be the optimal one. Such a distribu- 
tion exists and is given by 

a(x) = 6(x - x)l(n + l)Y Wa) 

where 6(x - 2) is a Dirac delta function, and 
i is the dimensionless radial position where 
u1 = Ul, i.e., 

u1 = z.il at x = ~7 Wb) 

This can be easily verified by substituting 
Eqs. (33) in Eq. (25). The obtained solution 
can obviously be accepted only if Eq. (33b) 
is satisfied for f E [0, 11. 

From a practical point of view, the activ- 
ity distribution (33a) is obviously not feasi- 
ble. However, it can be approximated by 
locating the active catalyst in a narrow re- 
gion centered about the optimal location x 
= f, using a limited total amount of catalyst 
in order to avoid metal dispersion prob- 
lems. A sensitivity analysis performed by 
Morbidelli et al. (2) showed that locating 
the catalyst in a region of width equal to 
about 4% of the particle radius, it is possi- 
ble to closely approximate the performance 
of a catalyst particle with a Dirac activity 
distribution function. 

It is worthwhile to point out that the opti- 
mal activity distribution (33a) has been de- 
rived using the approximate relationship 
(30), so that it can not be considered as the 
rigorous optimum. However, since in the 
case under examination Eq. (30) is rather 
accurate, it can be expected that the activ- 
ity distribution (33a) would lead to excel- 
lent particle performances, particularly 

with respect to other distributions previ- 
ously proposed in the literature. 

In order now to define the optimal loca- 
tion x as a function of the various involved 
parameters, it is convenient to first solve 
Eqs. (9)-(12) with the activity distribution 
(33), and then to identify the X value which 
maximizes the considered objective func- 
tion. The integration of the particle mass 
balances (9) and (lo), using the activity dis- 
tribution (33a), can be easily performed in 
the two subintervals of the integration do- 
main, x E [O,Z] and x E [Z,l], using the BCs 
(12a) and (12b), respectively, as 

u1 = 81 ; ll2 = Liz 
for x E [0,X] (34a) 

u1 = 1 + A*,(x) ; u2 = 1 + BV,,(x) 
for x E [.&ll (34b) 

where 

1 

x-l for n = 0 

qn(x) = In x for IZ = 1 

1-i 

(34c) 

for n = 2 

and &, L&, A, and B are integration con- 
stants which can be readily derived through 
the continuity conditions at x = X: 

a1 = 1 + AT,(f) 
ti2 = 1 + BW,(Z) (35) 

and the global conditions obtained by 
equating the concentration gradient evalu- 
ated at x = 1 estimated using both Eq. (34b) 
and the mass balances (9) and (10) 

=A 

= & th2.& + duff;) t36a) 

de 
( > -&=,=B 

= &j t&4,‘.f, + 52+22f;) (36b) 

where the superscript - indicates a quantity 
evaluated at x = X. The values of zi, and c2 
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can be calculated from the system of alge- 
braic equations, derived by substituting 
Eqs. (36) in Eqs. (35): 

Wb) 
while 8 readily derives from Eq. (18). The 
expressions for the evaluation of the inte- 
gral characteristic parameters of the parti- 
cle performance: 7, S, R, and P, are readily 
derived from their definitions and have 
been summarized in Table 2. The search of 
the optimal location 1 can then be per- 
formed numerically as described in detail in 
the next section. 

RESULTS AND DISCUSSION 

The system of Eqs. (37a), (37b), and (I@, 
for a given values of $i2, f and the other 
involved parameters, using til, ii2, and 6 as 
unknowns can exhibit multiple solutions, 
and consequently convergence difficulties. 
This can be avoided, as usual in problems 
of this type, formulating the problem in a 
different form, which exhibits a unique so- 
lution: Z and U, are given as input data, 
while U2, 6, and C#J,~ are unknown. More- 
over, by combining Eqs. (37a) and (37b) it 
can be seen that 

u, - 1 ($,‘.A + $22fi> -= 
a2 - l crl4l’fi + 524Q2f2) 

(38) 

where, since from Eq. (13) it follows that 
the ratio c#Q~/c#J~~ = ri0/r20 is a constant value 

TABLE 2 

Expressions of the Integral Characteristic 
Parameters of a Catalyst Particle with the 

Activity Distribution (33a) 

p = 4,v + 4.h + $23 
412(1 + 4 + 92 

dependent only on the conditions at the ex- 
ternal particle surface, the r.h.s. is indepen- 
dent of j and +i2. 

Therefore, the values & and 6 (which can 
be derived from Eqs. (38) and (18)) assume, 
for a given al, the same value for all values 
of the catalyst location, X. Since the same 
situation occurs for the integral characteris- 
tic parameters reported in Table 2, it can be 
concluded that also this quantities are inde- 
pendent of the catalyst location X. Using 
the parameter values summarized in Table 
1, which are representative of usual indus- 
trial operating conditions (Z), the values of 
the parameters n, S, R, and P can be calcu- 
lated as a function of 6i, for all possible 
values of the catalyst location X, as shown 
in Fig. la. On the other hand, once zi2 and 19 
are evaluated, the Thiele modulus $r* 
can be calculated, as a function of R, using 
Eq. (37a). The obtained values of $i2 as a 
function of Ui, for various values of X, are 
shown in Fig. lb. It is remarkable that, for a 
given ti, value, from Eq. (37a) it appears 
that 

which allows, once the +r2 vs U, has been 
calculated for one value of the optimal loca- 
tion f = fo, to readily compute the same 
curve for any other given value of i. So, the 
construction of the curves shown in Figs. 
la and b, actually requires the numerical 
solution of only one problem with fixed f. 
These figures summarize all the informa- 
tions necessary to define the optimal cata- 
lyst location. In particular, from Fig. la the 
value of U, which maximizes the desired 
characteristic parameter is determined, and 
then the value of X which allows to realize 
the so determined U, is estimated, for a 
given value of c#Q~, from Fig. lb. As ex- 
pected, it can be seen that the optimal cata- 
lyst location changes depending on which 
integral characteristic parameter is to be 
maximized. In particular, the global selec- 
tivity reaches its maximum value at the par- 
ticle surface, as it is expected for exother- 
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FIG. 1. (a) Integral characteristic parameters as a function of the dimensionless concentration value 
li, for a nonuniform catalyst particle with activity distribution (33); /31 = 0.0155. (b) Relationship 
between the values of ti,, reported in Fig. la, and the Thiele Modulus q5,*. 

mic parallel reactions, when the desired 
reaction has the lowest activation energy. 
The same data are shown in Figs. 2a and b 
for increased values of the heat of reaction 
parameters /3t and p2. This case exhibits the 
usual multiplicity behavior characteristic of 
nonisothermal catalyst particles. Thus, the 
steady states characterized by a positive 
slope of the $t2 vs Ur curve are unstable, 
and then not attainable by the system, and 
the local maximum and minimum values of 
$r indicate the bifurcation points. 

Note that in both Figs. lb and 2b the ex- 
amined values of the active catalyst loca- 
tion range in the interval x E [0.02, 0.981, 

since in practice the activity distribution 
(33a) is replaced by a step distribution cen- 
tered about X and with dimensionless width 
equal to 0.04. Moreover, although not indi- 
cated in the figures, it readily follows from 
Eq. (37a) that the asymptotic behavior of 
each c#I,* vs Ur curve, at fixed X, is +r2 -+ m at 
zi,*Oand$12+Oatti+ 1. 

From inspection of Figs. lb and 2b it ap- 
pears that for very large or low Thiele mod- 
ulus values, the value of X E [0.02, 0.981 
which realizes a desired li, value may not 
exist. In fact, in order to obtain a given til 
value for c$, --f w (4, + O), the optimal cata- 
lyst location z? +. 1 (2 --f 0) as it can be seen 

16 4 
A 

-3 

- Olmensionless Concentration iL 

lo3 
0 8~0 02325 

i 

P t 0.1 

16’ kzsl 0.4 

0.02 

Vi’ 
0 0.2 0.4 0.6 0.6 1 

- O~mensionlass Concentration. ii, 

FIG. 2. (a) Integral characteristic parameters as a function of the dimensionless concentration value 
a, for a nonuniform catalyst particle with activity distribution (33); /3, = 0.02325. (b) Relationship 
between the values of ii,, reported in Fig. 2a, and the Thiele Modulus $,*. 



CATALYST DESIGN FOR C2H40 SYNTHESIS 123 
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- 6: 

FIG. 3. Optimal value of the normalized process 
profit parameter P as a function of the Thiele Modulus 
41. 

from Eqs. (37a) and (34~). The plane geom- 
etry exhibits an irregular behavior for $i * 
0, leading to negative values of 2, which for 
physical reasons should be replaced by i = 
0 (as in the case of Laugmuir-Hinshelwood 
kinetics (2, 3)). Thus, in practice, for very 
large (small) values of the Thiele modulus, 
the active catalyst should be located at 1 = 
0.98 (X = 0.02). In conclusion, the values of 
the objective function P obtained as a func- 
tion of the Thiele modulus & using the opti- 
mal catalyst activity distribution (33) are 
shown in Fig. 3. The optimal location 2 de- 
pends on the value of the Thiele modulus 
for 0.083 < 4, < 4.1, and can be calculated 

from the curves shown in Figs. la and b, 
while for larger or smaller 4, value is 2 = 
0.98 or 0.02, respectively. 

With illustrative purposes the same cal- 
culations have been performed using the 
activity distribution proposed by Johnson 
and Verykios (I) 

a(x) = 
a+n+1 

n+l XU (40) 

with IX = 0 (corresponding to a uniformly 
impregnated particle), 3, 6, and 9. The val- 
ues of the integral characteristic parameters 
obtained for each of such distributions are 
shown in Figs. 4 to 7. The differences be- 
tween the results here shown and those re- 
ported by Johnson and Verykios (2) are due 
to some possible differences in the kinetic 
rate constant values (not reported in detail 
in that work) and to the use of the approxi- 
mate Eq. (30) instead of the oxygen mass 
balance (10). The calculation reported in 
Figs. 4 to 7 have been obtained through nu- 
merical integration of the exact system of 
equations (i.e., Eqs. (9), (lo), and (18)), us- 
ing the orthogonal collocation method on 
finite elements (7, 8). The use of finite ele- 
ments is required by the steepness of the 
concentration profiles within the particle 
caused by both the steepness of the activity 
profile (particularly at large values of the 
parameter a) and the magnitude of the 
Thiele modulus value. Two elements were 

1 

i 

01 
01 03 I 3 10 30 

- 01 

FIG. 4. Effectiveness factor 11 vs Thiele Modulus I$,, for a nonuniform catalyst particle with activity 
distribution (40). 
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FIG. 5. Global normalized selectivity S vs Thiele 
Modulus &, for a nonuniform catalyst particle with 
activity distribution (40). 

used for $i2 < 10, locating the boundary 
between the two elements at the coordinate 
value where the activity is about equal to 
10e3, so that in the inner element of the 
pellet almost no reaction is taking place. 
Usually, four collocation points are neces- 
sary in this element, and ten in the outer 
one. For larger values of the Thiele modu- 
lus, $i2 > 10, the outer element has been 
further divided in two elements, locating 
the boundary at a distance from the particle 
surface of the order of l/&G(l). In each 
of such elements about seven collocation 
points were introduced. The standard tech- 
nique of the orthogonal collocation method 
(7, 8) using the Jacoby polynomials 
Plop’ as trial functions with (Y = p = 0, 
has then been applied. 

Using Figs. 3 and 7, it is possible to com- 
pare the values of the characteristic param- 

FIG. 6. Overall normalized production rate of ethyl- 
ene oxide R vs Thiele Modulus +,, for a nonuniform 
catalyst particle with activity distribution (40). 

Ll 

1 : 

05- 

02_ 
01 1 

- 0, 
10 

FIG. 7. Normalized process profit parameter P vs 
Thiele Modulus 4, for a nonuniform catalyst particle 
with activity distribution (40). 

eter P, significative of the normalized pro- 
cess profit, obtained using the activity 
distribution (40) and the optimal one previ- 
ously determined. It is apparent that the op- 
timal activity distribution leads to larger P 
values for all the Thiele modulus values. 
The only exception is the region of large 4, 
values, where the optimization procedure 
would lead to a Dirac activity distribution 
closer to the particle surface than x = 0.98. 
Since we have imposed 2 < 0.98, it follows 
that, in this region, activity distributions 
other than the Dirac one, such as that given 
by Eq. (40), can lead to better performances 
of the catalyst particle. It is noticeable that 
for the industrial ethylene oxide synthesis 
(I) is +1 = 1.4. In this case, as previously 
pointed out by Johnson and Verykios (I), 
the uniform activity distribution and the 
one given by Eq. (40) with (Y = 3, give the 
same overall rate of ethylene oxide forma- 
tion (i.e., R = 1.2), but the second one 
leads to a selectivity increase of about 
26.9%, as it appears in Figs. 5 and 6. From 
Fig. 1 it can be seen that the optimal distri- 
bution, operating with the same R value, 
leads to a selectivity increase, with respect 
to the uniform one, of about 34.3%, and is 
obtained by locating the active catalyst at f 
= 0.82. Therefore, the optimal activity dis- 
tribution (33) can significantly improve the 
catalyst particle performance. This has 
been represented in this work by the pro- 
cess profit parameter P; however, the same 
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optimization procedure can be immediately V, pellet volume 
applied to other integral parameters charac- x 
teristic of the particle performance. Finally, 

dRP 

note that the outlined procedure is of gen- Greek Letters 

era1 validity for parallel reaction schemes (Y 
with any reaction kinetics, and the obtained 
results apply qualitatively to any case pj 
where the activation energy of the desired 3/j 
reaction is lower than that of the undesired 6 
one. 

a 
E 

ci 

D 

T 

il; 
g 
H 
kj, kj 

JY 1 

n 

P 

5 
‘P 

R 

RP 

s 

Sl 

S 

T 
ui 

APPENDIX: NOMENCLATURE 

activity distribution function 
ratio between the cost of 1 mole of 

ethylene oxide and the recycle 
cost per unit of recycled ethylene 

concentration of the ith component 
effective diffusion coefficient 
activation energy 
rJrO 

AHj 

8 

Y 

125 

exponent of the power law activity 
distribution 

(-AHj)Dl CI”IXT” 
EjIR To 
Dirac delta function 
standard enthalpy change of the jth 

reaction 
TIT0 
effective thermal conductivity of 

catalyst particle 
C,“D,IC$‘D2 
defined by Eq. (13) 
((3 - lye 
Thiele modulus 
function defined by Eq. (34~) 

functions defined by Eqs. (5) and (6) Subscripts 
function defined by Eq. (26) i component 
parameter defined by Eq. (31) j reaction 
local and volume average reaction 1 ethylene or reaction (1) 

rate constants 2 oxygen or reaction (2) 
differential operator defined by Eq. 

(14) 
Superscripts 

integer characteristic of pellet geom- O 
etry; n = 0 for infinite slab; n = 1 - 
for infinite cylinder; IZ = 2 for 
sphere 

normalized process profit parame- 1. 
ter, defined by Eq. (23) 

rate of the jth reaction 2. 

distance from the center of the pellet 3. 
overall normalized production of 

ethylene oxide, defined by 
(22) 

characteristic pellet dimension; 
thickness (n = 0), radius (n = 

global selectivity, defined by 
(20) 

local selectivity, defined by Eq. 
global normalized selectivity, 

fined by Eq. (21) 
temperature 
CilC~ 

Eq. 4. 

half 5. 
172) 6. 
Eq. 

7. 

(27) 
de- 

8. 

external particle surface 
location of the active catalyst 
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